论文库

Candidate l-methionine target piRNA regulatory networks analysis response to cocaine-conditioned place preference in mice

第一作者: Zhang, Kunlin
联系作者: Zhao, Mei;Wang, Yan;
刊物名称: BRAIN AND BEHAVIOR
发表年度: 2021
卷:
期:
页: 10
影响因子: 2.091
摘要:

Background Methionine has been proven to inhibit addictive behaviors of cocaine dependence. However, the mechanism of methionine response to cocaine CPP is unknown. Recent evidence highlights piRNAs to regulate genes via a miRNA-like mechanism. Here, next-generation sequencing is used to study mechanism on methionine response to drug-induced behaviors though piRNA. Methods l-methionine treatment cocaine CPP animal model was used to do non-coding RNA sequencing. There were four groups to sequence: saline+saline (SS), MET+saline (MS), MET+cocaine (MC), and cocaine+saline. Combining mRNA sequencing data, the network and regulation of piRNA were analyzed with their corresponding mRNA and miRNA. Results Analysis of the piRNAome reveals that piRNAs inversely regulated their target mRNA genes. KEGG analysis of DE-piRNA target mRNA genes were enriched in Morphine addiction, GABAergic synapse and Cholinergic synapse pathway. Furthermore, four significantly differential expressed genes Cacna2d3, Epha6, Nedd4l, and Vav2 were identified and regulated by piRNAs in the process of l-methionine inhibits cocaine CPP. Thereinto, Vav2 was regulated by multiple DE piRNAs by sharing the common sequence: GTCTCTCCAGCCACCTT. Meanwhile, it was found that piRNA positively regulates miRNA and three genes Bcl3, Il20ra, and Insrr were identified and regulated by piRNA through miRNA. Conclusion The results showed that piRNA negatively regulated target mRNA genes and positively regulated target miRNA genes. Genes located in substance dependence, signal transduction and also nervous functions pathways were identified. When taken together, these data may explain the roles of l-methionine in counteracting the effects of cocaine CPP via piRNAs.

全文链接: