情感计算、模式识别、计算机视觉,特别是智能微表情分析
代表论著:
一作/通讯作者期刊论文
1. Li, J., Dong, Z., Lu, S., Wang, S. J., Yan, W. J., Ma, Y., Liu, Y., Huang, C., & Fu, X. (2022). CAS(ME)3: A Third Generation Facial Spontaneous Micro-Expression Database with Depth Information and High Ecological Validity. IEEE Transactions on Pattern Analysis and Machine Intelligence.
2. Li, J., Soladie, C., & Seguier, R. (2020). Local temporal pattern and data augmentation for micro-expression spotting. IEEE Transactions on Affective Computing.
3. Li, J., Wang, T., & Wang, S. J. (2022). Facial Micro-Expression Recognition based on Deep Local-Holistic Network. Applied Sciences.
4. Li, J. T., Xu, H. P., Shan, L., Liu, W., & Chen, G. Z. (2016). An efficient compressive sensing based PS-DInSAR method for surface deformation estimation. Measurement Science and Technology, 27(11), 114001.
5. 李婧婷, 东子朝, 刘烨, 王甦菁, &庄东哲. (2022). 基于人类注意机制的微表情检测方法. 心理科学进展.
一作/通讯作者会议论文
1. Li, J., Yap, M. H., Cheng, W. H., See, J., Hong, X., Li, X., & Wang, S. J. (2021, October). FME'21: 1st Workshop on Facial Micro-Expression: Advanced Techniques for Facial Expressions Generation and Spotting. In Proceedings of the 29th ACM International Conference on Multimedia (pp. 5700-5701).
2. Li, J., Wang, S. J., Yap, M. H., See, J., Hong, X., & Li, X. (2020, November). MEGC2020-the third facial micro-expression grand challenge. In 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020) (pp. 777-780). IEEE.
3. Li, J., Soladié, C., Séguier, R., Wang, S. J., & Yap, M. H. (2019, May). Spotting micro-expressions on long videos sequences. In 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019) (pp. 1-5). IEEE.
4. Li, J., Soladié, C., & Séguier, R. (2018, May). LTP-ML: Micro-expression detection by recognition of local temporal pattern of facial movements. In 2018 13th IEEE international conference on automatic face & gesture recognition (FG 2018) (pp. 634-641). IEEE.
5. Li, J., Soladié, C., & Séguier, R. (2019, February). A Survey on Databases for Facial Micro-Expression Analysis. In VISIGRAPP (5: VISAPP) (pp. 241-248).
6. Li, J., & Xu, H. (2015, September). PS-DInSAR deformation velocity estimation by the compressive sensing. In 2015 IEEE International Conference on Imaging Systems and Techniques (IST) (pp. 1-5). IEEE.
7. Li, J., Soladié, C., & Séguier, R. (2018). Détection de Micro-expressions par Reconnaissance de Motif Local Temporel de Mouvements Faciaux. apex, 1, 1-5.
非一作/通讯作者期刊以及会议论文
1. Wang, S. J., He, Y., Li, J., & Fu, X. (2021). MESNet: A convolutional neural network for spotting multi-scale micro-expression intervals in long videos. IEEE Transactions on Image Processing, 30, 3956-3969.
2. Dong, Z., Wang, G., Lu, S., Li, J., Yan, W., & Wang, S. J. (2021). Spontaneous Facial Expressions and Micro-expressions Coding: From Brain to Face. Frontiers in Psychology, 12, 784834-784834.
3. Weber, R., Li, J., Soladié, C., & Séguier, R. (2019, July). A Survey on Databases of Facial Macro-expression and Micro-expression. In Computer Vision, Imaging and Computer Graphics Theory and Applications: 13th International Joint Conference, VISIGRAPP 2018 Funchal–Madeira, Portugal, January 27–29, 2018, Revised Selected Papers (Vol. 997, p. 298). Springer.
4. See, J., Yap, M. H., Li, J., Hong, X., & Wang, S. J. (2019, May). MEGC2019–the second facial micro-expressions grand challenge. In 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019) (pp. 1-5). IEEE.
5. He, Y., Wang, S. J., Li, J., & Yap, M. H. (2020, November). Spotting macro-and micro-expression intervals in long video sequences. In 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020) (pp. 742-748). IEEE.
6. Zhang, L. W., Li, J., Wang, S. J., Duan, X. H., Yan, W. J., Xie, H. Y., & Huang, S. C. (2020, November). Spatio-temporal fusion for macro-and micro-expression spotting in long video sequences. In 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020) (pp. 734-741). IEEE.
7. 鲁绍愿,李婧婷,东子朝,王港,李振,马崟桓,王甦菁,庄东哲*. (2022). 一项实证研究:高风险场景下微表情的高暴露可能性. 中国人民公安大学学报(自然科学版).